3.747 \(\int \frac {(a+b \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {13}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=587 \[ \frac {2 b \left (a^2 (229 A+297 C)+3 A b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{693 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (3 a^2 (9 A+11 C)+5 A b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{231 d \cos ^{\frac {7}{2}}(c+d x)}-\frac {2 \left (-15 a^4 (9 A+11 C)-a^2 b^2 (205 A+297 C)+4 A b^4\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{693 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 b (a-b) \sqrt {a+b} \left (a^4 (741 A+957 C)+3 a^2 b^2 (17 A+33 C)+8 A b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{693 a^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (15 a^4 (9 A+11 C)-6 a^3 b (101 A+132 C)+3 a^2 b^2 (19 A+33 C)+6 a A b^3+8 A b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{693 a^3 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {10 A b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{99 d \cos ^{\frac {9}{2}}(c+d x)} \]

[Out]

10/99*A*b*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(9/2)+2/11*A*(a+b*cos(d*x+c))^(5/2)*sin(d*x+c)/d/cos(
d*x+c)^(11/2)+2/231*(5*A*b^2+3*a^2*(9*A+11*C))*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(7/2)+2/693*b*(3
*A*b^2+a^2*(229*A+297*C))*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+c)^(5/2)-2/693*(4*A*b^4-15*a^4*(9*A+11
*C)-a^2*b^2*(205*A+297*C))*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^2/d/cos(d*x+c)^(3/2)+2/693*(a-b)*b*(8*A*b^4+3*a
^2*b^2*(17*A+33*C)+a^4*(741*A+957*C))*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2)
,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/d+2/693*(
a-b)*(6*a*A*b^3+8*A*b^4+15*a^4*(9*A+11*C)+3*a^2*b^2*(19*A+33*C)-6*a^3*b*(101*A+132*C))*cot(d*x+c)*EllipticF((a
+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d

________________________________________________________________________________________

Rubi [A]  time = 2.55, antiderivative size = 587, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {3048, 3047, 3055, 2998, 2816, 2994} \[ -\frac {2 \left (-a^2 b^2 (205 A+297 C)-15 a^4 (9 A+11 C)+4 A b^4\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{693 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (a^2 (229 A+297 C)+3 A b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{693 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (3 a^2 (9 A+11 C)+5 A b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (a-b) \sqrt {a+b} \left (3 a^2 b^2 (19 A+33 C)-6 a^3 b (101 A+132 C)+15 a^4 (9 A+11 C)+6 a A b^3+8 A b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{693 a^3 d}+\frac {2 b (a-b) \sqrt {a+b} \left (3 a^2 b^2 (17 A+33 C)+a^4 (741 A+957 C)+8 A b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{693 a^4 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {10 A b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{99 d \cos ^{\frac {9}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(13/2),x]

[Out]

(2*(a - b)*b*Sqrt[a + b]*(8*A*b^4 + 3*a^2*b^2*(17*A + 33*C) + a^4*(741*A + 957*C))*Cot[c + d*x]*EllipticE[ArcS
in[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))
/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(693*a^4*d) + (2*(a - b)*Sqrt[a + b]*(6*a*A*b^3 + 8*A*b^4 + 15
*a^4*(9*A + 11*C) + 3*a^2*b^2*(19*A + 33*C) - 6*a^3*b*(101*A + 132*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a +
b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sq
rt[(a*(1 + Sec[c + d*x]))/(a - b)])/(693*a^3*d) + (2*(5*A*b^2 + 3*a^2*(9*A + 11*C))*Sqrt[a + b*Cos[c + d*x]]*S
in[c + d*x])/(231*d*Cos[c + d*x]^(7/2)) + (2*b*(3*A*b^2 + a^2*(229*A + 297*C))*Sqrt[a + b*Cos[c + d*x]]*Sin[c
+ d*x])/(693*a*d*Cos[c + d*x]^(5/2)) - (2*(4*A*b^4 - 15*a^4*(9*A + 11*C) - a^2*b^2*(205*A + 297*C))*Sqrt[a + b
*Cos[c + d*x]]*Sin[c + d*x])/(693*a^2*d*Cos[c + d*x]^(3/2)) + (10*A*b*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])
/(99*d*Cos[c + d*x]^(9/2)) + (2*A*(a + b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(11*d*Cos[c + d*x]^(11/2))

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {13}{2}}(c+d x)} \, dx &=\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {2}{11} \int \frac {(a+b \cos (c+d x))^{3/2} \left (\frac {5 A b}{2}+\frac {1}{2} a (9 A+11 C) \cos (c+d x)+\frac {1}{2} b (4 A+11 C) \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\\ &=\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {4}{99} \int \frac {\sqrt {a+b \cos (c+d x)} \left (\frac {3}{4} \left (5 A b^2+3 a^2 (9 A+11 C)\right )+\frac {1}{2} a b (76 A+99 C) \cos (c+d x)+\frac {1}{4} b^2 (56 A+99 C) \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\\ &=\frac {2 \left (5 A b^2+3 a^2 (9 A+11 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {8}{693} \int \frac {\frac {5}{8} b \left (3 A b^2+a^2 (229 A+297 C)\right )+\frac {1}{8} a \left (45 a^2 (9 A+11 C)+b^2 (1531 A+2079 C)\right ) \cos (c+d x)+\frac {1}{8} b \left (36 a^2 (9 A+11 C)+b^2 (452 A+693 C)\right ) \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 \left (5 A b^2+3 a^2 (9 A+11 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 b \left (3 A b^2+a^2 (229 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {16 \int \frac {-\frac {15}{16} \left (4 A b^4-15 a^4 (9 A+11 C)-a^2 b^2 (205 A+297 C)\right )+\frac {5}{16} a b \left (3 a^2 (337 A+429 C)+b^2 (461 A+693 C)\right ) \cos (c+d x)+\frac {5}{8} b^2 \left (3 A b^2+a^2 (229 A+297 C)\right ) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3465 a}\\ &=\frac {2 \left (5 A b^2+3 a^2 (9 A+11 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 b \left (3 A b^2+a^2 (229 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 \left (4 A b^4-15 a^4 (9 A+11 C)-a^2 b^2 (205 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {32 \int \frac {\frac {15}{32} b \left (8 A b^4+3 a^2 b^2 (17 A+33 C)+a^4 (741 A+957 C)\right )+\frac {15}{32} a \left (2 A b^4+15 a^4 (9 A+11 C)+3 a^2 b^2 (221 A+297 C)\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{10395 a^2}\\ &=\frac {2 \left (5 A b^2+3 a^2 (9 A+11 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 b \left (3 A b^2+a^2 (229 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 \left (4 A b^4-15 a^4 (9 A+11 C)-a^2 b^2 (205 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}+\frac {\left ((a-b) \left (6 a A b^3+8 A b^4+15 a^4 (9 A+11 C)+3 a^2 b^2 (19 A+33 C)-6 a^3 b (101 A+132 C)\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{693 a^2}+\frac {\left (b \left (8 A b^4+3 a^2 b^2 (17 A+33 C)+a^4 (741 A+957 C)\right )\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{693 a^2}\\ &=\frac {2 (a-b) b \sqrt {a+b} \left (8 A b^4+3 a^2 b^2 (17 A+33 C)+a^4 (741 A+957 C)\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{693 a^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (6 a A b^3+8 A b^4+15 a^4 (9 A+11 C)+3 a^2 b^2 (19 A+33 C)-6 a^3 b (101 A+132 C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{693 a^3 d}+\frac {2 \left (5 A b^2+3 a^2 (9 A+11 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{231 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 b \left (3 A b^2+a^2 (229 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 \left (4 A b^4-15 a^4 (9 A+11 C)-a^2 b^2 (205 A+297 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{693 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {10 A b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{99 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{11 d \cos ^{\frac {11}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.94, size = 1591, normalized size = 2.71 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(13/2),x]

[Out]

((-4*a*(135*a^6*A - 78*a^4*A*b^2 - 49*a^2*A*b^4 - 8*A*b^6 + 165*a^6*C - 66*a^4*b^2*C - 99*a^2*b^4*C)*Sqrt[((a
+ b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d
*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sq
rt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(-741
*a^5*A*b - 51*a^3*A*b^3 - 8*a*A*b^5 - 957*a^5*b*C - 99*a^3*b^3*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)
]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c
 + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c +
 d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b
)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[
c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)
]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(-741*a^4*A*b^2 - 51*a^2*A*b^4 - 8*
A*b^6 - 957*a^4*b^2*C - 99*a^2*b^4*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c
 + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[(
(a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a
 + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Elli
pticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/
((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(
((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*E
llipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c +
 d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*S
qrt[Cos[c + d*x]])))/(693*a^3*d) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((2*Sec[c + d*x]^4*(81*a^2*A*S
in[c + d*x] + 113*A*b^2*Sin[c + d*x] + 99*a^2*C*Sin[c + d*x]))/693 + (2*Sec[c + d*x]^3*(229*a^2*A*b*Sin[c + d*
x] + 3*A*b^3*Sin[c + d*x] + 297*a^2*b*C*Sin[c + d*x]))/(693*a) + (2*Sec[c + d*x]^2*(135*a^4*A*Sin[c + d*x] + 2
05*a^2*A*b^2*Sin[c + d*x] - 4*A*b^4*Sin[c + d*x] + 165*a^4*C*Sin[c + d*x] + 297*a^2*b^2*C*Sin[c + d*x]))/(693*
a^2) + (2*Sec[c + d*x]*(741*a^4*A*b*Sin[c + d*x] + 51*a^2*A*b^3*Sin[c + d*x] + 8*A*b^5*Sin[c + d*x] + 957*a^4*
b*C*Sin[c + d*x] + 99*a^2*b^3*C*Sin[c + d*x]))/(693*a^3) + (46*a*A*b*Sec[c + d*x]^4*Tan[c + d*x])/99 + (2*a^2*
A*Sec[c + d*x]^5*Tan[c + d*x])/11))/d

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C b^{2} \cos \left (d x + c\right )^{4} + 2 \, C a b \cos \left (d x + c\right )^{3} + 2 \, A a b \cos \left (d x + c\right ) + A a^{2} + {\left (C a^{2} + A b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {13}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(13/2),x, algorithm="fricas")

[Out]

integral((C*b^2*cos(d*x + c)^4 + 2*C*a*b*cos(d*x + c)^3 + 2*A*a*b*cos(d*x + c) + A*a^2 + (C*a^2 + A*b^2)*cos(d
*x + c)^2)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(13/2), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(13/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.90, size = 4695, normalized size = 8.00 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(13/2),x)

[Out]

2/693/d*(8*A*cos(d*x+c)^6*b^6+99*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^2*b^4-135*A*cos(d*x+
c)^6*a^6+54*A*cos(d*x+c)^4*a^6+18*A*cos(d*x+c)^2*a^6-8*A*cos(d*x+c)^7*b^6-135*A*cos(d*x+c)^7*a^5*b-741*A*cos(d
*x+c)^7*a^4*b^2-205*A*cos(d*x+c)^7*a^3*b^3-51*A*cos(d*x+c)^7*a^2*b^4+4*A*cos(d*x+c)^7*a*b^5+160*A*cos(d*x+c)^4
*a^4*b^2-A*cos(d*x+c)^4*a^2*b^4+86*A*cos(d*x+c)^3*a^5*b-741*A*cos(d*x+c)^6*a^5*b+307*A*cos(d*x+c)^6*a^4*b^2-51
*A*cos(d*x+c)^6*a^3*b^3+52*A*cos(d*x+c)^6*a^2*b^4-8*A*cos(d*x+c)^6*a*b^5+566*A*cos(d*x+c)^5*a^5*b+140*A*cos(d*
x+c)^5*a^3*b^3+4*A*cos(d*x+c)^5*a*b^5+116*A*cos(d*x+c)^3*a^3*b^3+274*A*cos(d*x+c)^2*a^4*b^2+224*A*cos(d*x+c)*a
^5*b+63*A*a^6+51*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^4-165*C*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1
/2))*sin(d*x+c)*cos(d*x+c)^6*a^6-165*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*a^6+396*C*cos(d*x+
c)^3*a^5*b-957*C*cos(d*x+c)^6*a^5*b+363*C*cos(d*x+c)^6*a^4*b^2-99*C*cos(d*x+c)^6*a^3*b^3+99*C*cos(d*x+c)^6*a^2
*b^4+726*C*cos(d*x+c)^5*a^5*b+396*C*cos(d*x+c)^5*a^3*b^3+594*C*cos(d*x+c)^4*a^4*b^2-165*C*cos(d*x+c)^7*a^5*b-9
57*C*cos(d*x+c)^7*a^4*b^2-297*C*cos(d*x+c)^7*a^3*b^3-99*C*cos(d*x+c)^7*a^2*b^4-891*C*EllipticF((-1+cos(d*x+c))
/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*a^4*b^2-99*C*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)
*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^3+957*C*El
lipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^5*b+957*C*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a
+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*a^4*b^2+99*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((
-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^3*b^3-165*C*cos(d*x+c)^6*a^6+66*C*co
s(d*x+c)^4*a^6+99*C*cos(d*x+c)^2*a^6-957*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^5*b-891*C*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*
x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^4*b^2-99*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*
x+c)^6*a^3*b^3+957*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE
((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*a^5*b+957*C*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1
/2))*sin(d*x+c)*cos(d*x+c)^5*a^4*b^2+99*C*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c
)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*b^3+99*C*El
lipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b^4-957*C*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/
(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*a^5*b+8*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5-741*A*sin(d*x+c)*cos(d*x+c)^6*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x
+c),(-(a-b)/(a+b))^(1/2))*a^5*b-663*A*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2-51*A*sin(d*
x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-
1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3-2*A*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2)
)*a^2*b^4-8*A*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5+741*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*si
n(d*x+c)*cos(d*x+c)^6*a^5*b+741*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^4*b^2+51*A*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(
a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a^3*b^3+51*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a
^2*b^4+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d
*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^6*a*b^5-741*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(
a-b)/(a+b))^(1/2))*a^5*b-663*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2-51*A*sin(d*x+c)*co
s(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3-2*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b
^4-8*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)
*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^5+741*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)
/(a+b))^(1/2))*a^5*b+741*A*sin(d*x+c)*cos(d*x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b^2+51*A*sin(d*x+c)*cos(d*
x+c)^5*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c
))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^3-135*A*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((
a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^6+8*A
*sin(d*x+c)*cos(d*x+c)^6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellip
ticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^6-135*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*
x+c)^5*a^6+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+c
os(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^5*b^6)/(a+b*cos(d*x+c))^(1/2)/a^3/sin(d*x+c)
/cos(d*x+c)^(11/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {13}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(13/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^(5/2)/cos(d*x + c)^(13/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{13/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(5/2))/cos(c + d*x)^(13/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(5/2))/cos(c + d*x)^(13/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(13/2),x)

[Out]

Timed out

________________________________________________________________________________________